A point source of $SH$ waves in the medium with a vertical boundary in the case of smooth increasing velocity of wave's propagation with the depth
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 24, Tome 218 (1994), pp. 44-55
Cet article a éte moissonné depuis la source Math-Net.Ru
The solution of the equation for $SH$ waves is constructed by the separation of variables method. Here $\alpha(x),g(x)$ are step functions, $\beta(y),d(y)\in C^\infty$, $d'>0$. Its asymptotic expansion, as $\omega\to+\infty$ is found. Bibliography: 6 titles.
@article{ZNSL_1994_218_a4,
author = {S. A. Kochengin},
title = {A point source of $SH$ waves in the medium with a~vertical boundary in the case of smooth increasing velocity of wave's propagation with the depth},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--55},
year = {1994},
volume = {218},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a4/}
}
TY - JOUR AU - S. A. Kochengin TI - A point source of $SH$ waves in the medium with a vertical boundary in the case of smooth increasing velocity of wave's propagation with the depth JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 44 EP - 55 VL - 218 UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a4/ LA - ru ID - ZNSL_1994_218_a4 ER -
%0 Journal Article %A S. A. Kochengin %T A point source of $SH$ waves in the medium with a vertical boundary in the case of smooth increasing velocity of wave's propagation with the depth %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 44-55 %V 218 %U http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a4/ %G ru %F ZNSL_1994_218_a4
S. A. Kochengin. A point source of $SH$ waves in the medium with a vertical boundary in the case of smooth increasing velocity of wave's propagation with the depth. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 24, Tome 218 (1994), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a4/