Spectral synthesis in the Sobolev space associated with integral metric
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 92-111

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to prove Theorem A. Theorem A. Let $l\in\mathbb N$, $A\subset\mathbb R^n$. Then the following two conditions are equivalent: 1) for any $\varepsilon>0$ there exist a function $f_\varepsilon$ and an open set $G\supset A$ such that $$ \operatorname{supp}f_\varepsilon\subset\mathbb R^n\setminus G,\qquad\|f-f_\varepsilon\|_{W^l_1}\le\varepsilon; $$ 2) for any $\alpha=(\alpha_1,\dots,\alpha_n)\in\{0,1,2,\dots,\}^n$, $|\alpha|=\alpha_1+\dots+\alpha_n$, there exists a set $E_\alpha$ with the following properties: a) if $n\le l-|\alpha|$ then $E_\alpha=A$; b) if $n>l-|\alpha|$ then the Hausdorff measure of order $n-l+|\alpha|$ of set $A\setminus E_\alpha$ is equal to zero; c) for any point $x\in E_\alpha$ the following relation holds: $$ \lim_{a\to0}a^{-n}\int_{D(x,a)}|D^\alpha f(y)|\,dy=0, $$ where $D(x,a)$ is the ball of radius $a>0$ centered at $x\in\mathbb R^n$. Some generalizations of this result are also proved. Bibliography: 9 titles.
@article{ZNSL_1994_217_a8,
     author = {Yu. V. Netrusov},
     title = {Spectral synthesis in the {Sobolev} space associated with integral metric},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--111},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a8/}
}
TY  - JOUR
AU  - Yu. V. Netrusov
TI  - Spectral synthesis in the Sobolev space associated with integral metric
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 92
EP  - 111
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a8/
LA  - ru
ID  - ZNSL_1994_217_a8
ER  - 
%0 Journal Article
%A Yu. V. Netrusov
%T Spectral synthesis in the Sobolev space associated with integral metric
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 92-111
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a8/
%G ru
%F ZNSL_1994_217_a8
Yu. V. Netrusov. Spectral synthesis in the Sobolev space associated with integral metric. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 92-111. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a8/