Quantitative aspect of correction theorems.~II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 83-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $0\varepsilon\le1$, $F\in C(\mathbb T)$, $E=\{F\ne0\}$, $\delta>0$. Then there exists a function $G$ with uniformly convergent Fourier series such that $|G|+|F-G|\le(1+\delta)|F|$, $m\{F\ne G\}\le\varepsilon mE$ and $\sup\{|\sum_{k\le j\le l}\hat G(j)\zeta^j|\colon\zeta\in\mathbb T,\ k\le l\}\le\mathrm{const}\|F\|_\infty(1+\log\varepsilon^{-1})$. Bibliography: 3 titles.
@article{ZNSL_1994_217_a7,
author = {S. V. Kislyakov},
title = {Quantitative aspect of correction {theorems.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--91},
publisher = {mathdoc},
volume = {217},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a7/}
}
S. V. Kislyakov. Quantitative aspect of correction theorems.~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 83-91. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a7/