Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 74-82
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mu$ be a Borel measure with a compact support $F\subset\mathbb C$, $\rho$ be the distance from the set $F$; $$ A_K(f)(z)=\int_FK(\zeta,z)f(\zeta)\,dm(\zeta),\qquad z\in\mathbb C\setminus F, $$ where $K(\zeta,z)=(\zeta-z)^{-2}$ or $K(\zeta,z)=(|\zeta-z|(\zeta-z))^{-1}$ and $m$ is the Lebesque measure. Let $\psi\colon(0,+\infty)\to\mathbb R_+$ be a nondecreasing positive function, $\Phi(z)=\psi(\rho(z))\rho(z)$, $z\in\mathbb C\setminus F$. We prove that under some additional assumptions on p, the operator $A_K$ is bounded from $L^2(\mu)$ to $L^2(\Phi m)$ if and only if $$ \int^1_0\frac{\psi(t)}t\,dt+\int_1^{+\infty}\frac{\psi(t)}{t^2}\,dt<+\infty. $$ This means that the interference effect is not observed in such situations. Bibliography: 4 titles.
@article{ZNSL_1994_217_a6,
author = {P. P. Kargaev},
title = {Nonclassical weighted norm estimates for some {Calder\'on{\textendash}Zygmund} operators on the plane},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {74--82},
year = {1994},
volume = {217},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/}
}
P. P. Kargaev. Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 74-82. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/