Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 74-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mu$ be a Borel measure with a compact support $F\subset\mathbb C$, $\rho$ be the distance from the set $F$; $$ A_K(f)(z)=\int_FK(\zeta,z)f(\zeta)\,dm(\zeta),\qquad z\in\mathbb C\setminus F, $$ where $K(\zeta,z)=(\zeta-z)^{-2}$ or $K(\zeta,z)=(|\zeta-z|(\zeta-z))^{-1}$ and $m$ is the Lebesque measure. Let $\psi\colon(0,+\infty)\to\mathbb R_+$ be a nondecreasing positive function, $\Phi(z)=\psi(\rho(z))\rho(z)$, $z\in\mathbb C\setminus F$. We prove that under some additional assumptions on p, the operator $A_K$ is bounded from $L^2(\mu)$ to $L^2(\Phi m)$ if and only if $$ \int^1_0\frac{\psi(t)}t\,dt+\int_1^{+\infty}\frac{\psi(t)}{t^2}\,dt<+\infty. $$ This means that the interference effect is not observed in such situations. Bibliography: 4 titles.
@article{ZNSL_1994_217_a6,
     author = {P. P. Kargaev},
     title = {Nonclassical weighted norm estimates for some {Calder\'on{\textendash}Zygmund} operators on the plane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--82},
     year = {1994},
     volume = {217},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/}
}
TY  - JOUR
AU  - P. P. Kargaev
TI  - Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 74
EP  - 82
VL  - 217
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/
LA  - ru
ID  - ZNSL_1994_217_a6
ER  - 
%0 Journal Article
%A P. P. Kargaev
%T Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 74-82
%V 217
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/
%G ru
%F ZNSL_1994_217_a6
P. P. Kargaev. Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 74-82. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a6/