Singular parts of pluriharmonic measures
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A measure $\mu$ defined on the complex sphere $S$ is called pluriharmonic if its Poisson integral is a pluriharmonic function (in the unit ball of $\mathbb C^n$). А probability measure $\rho$ is called representing if $\int_Sf\,d\rho=f(0)$ for all $f$ in the ball algebra. It is shown that singular parts of pluriharmonic measures and representing measures are mutually singular. Bibliography: 5 titles.
			
            
            
            
          
        
      @article{ZNSL_1994_217_a4,
     author = {E. S. Dubtsov},
     title = {Singular parts of pluriharmonic measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--58},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/}
}
                      
                      
                    E. S. Dubtsov. Singular parts of pluriharmonic measures. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/