Singular parts of pluriharmonic measures
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58

Voir la notice de l'article provenant de la source Math-Net.Ru

A measure $\mu$ defined on the complex sphere $S$ is called pluriharmonic if its Poisson integral is a pluriharmonic function (in the unit ball of $\mathbb C^n$). А probability measure $\rho$ is called representing if $\int_Sf\,d\rho=f(0)$ for all $f$ in the ball algebra. It is shown that singular parts of pluriharmonic measures and representing measures are mutually singular. Bibliography: 5 titles.
@article{ZNSL_1994_217_a4,
     author = {E. S. Dubtsov},
     title = {Singular parts of pluriharmonic measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--58},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Singular parts of pluriharmonic measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 54
EP  - 58
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/
LA  - ru
ID  - ZNSL_1994_217_a4
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Singular parts of pluriharmonic measures
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 54-58
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/
%G ru
%F ZNSL_1994_217_a4
E. S. Dubtsov. Singular parts of pluriharmonic measures. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/