Singular parts of pluriharmonic measures
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58
Cet article a éte moissonné depuis la source Math-Net.Ru
A measure $\mu$ defined on the complex sphere $S$ is called pluriharmonic if its Poisson integral is a pluriharmonic function (in the unit ball of $\mathbb C^n$). А probability measure $\rho$ is called representing if $\int_Sf\,d\rho=f(0)$ for all $f$ in the ball algebra. It is shown that singular parts of pluriharmonic measures and representing measures are mutually singular. Bibliography: 5 titles.
@article{ZNSL_1994_217_a4,
author = {E. S. Dubtsov},
title = {Singular parts of pluriharmonic measures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--58},
year = {1994},
volume = {217},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/}
}
E. S. Dubtsov. Singular parts of pluriharmonic measures. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 54-58. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a4/