Weak generators of the algebra of measures and unicellularity of convolution operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 36-53

Voir la notice de l'article provenant de la source Math-Net.Ru

A general procedure is constructed, which allows us to consider operators of convolution with measures acting on a large class of spaces of distributions on the segment $[0,a)$, $0$. It is proved that if a measure $\mu$ is a weak generator of the algebra of measures on $[0,a)$, then $C_\mu$ (the operator of convolution with $\mu$) is unicellular. We present a condition on the measure $\mu$ under which unicellularity of $C_\mu$ implies that $\mu$ is a weak generator of the algebra of measures. The following statement is proved as well. Let $\theta(z)=e^{-a\frac{1+z}{1-z}}$, $K_\theta=H^2\ominus\theta H^2$, and let $P_\theta$ be the orthogonal projection from $H^2$ onto $K_\theta$; moreover, let $\mu$ be a weak generator of the algebra of measures on $[0,a)$ and $\varphi(z)=(\mathcal F^{-1}\mu)(i\frac{z+1}{z-1})$, $z\in\mathbb D$ (here $\mathbb D$ is the unit disc, and $\mathcal F^{-1}$ is the inverse Fourier transform). Let $\psi\in H^\infty$ and let $p$ be a polynomial such that $p\circ(\psi-\varphi)\in\theta H^\infty$. Then the operator $x\mapsto P_\theta\psi x$ acting in $K_\theta$ is unicellular. Bibliography: 13 titles.
@article{ZNSL_1994_217_a3,
     author = {M. F. Gamal'},
     title = {Weak generators of the algebra of measures and unicellularity of convolution operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--53},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a3/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - Weak generators of the algebra of measures and unicellularity of convolution operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 36
EP  - 53
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a3/
LA  - ru
ID  - ZNSL_1994_217_a3
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T Weak generators of the algebra of measures and unicellularity of convolution operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 36-53
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a3/
%G ru
%F ZNSL_1994_217_a3
M. F. Gamal'. Weak generators of the algebra of measures and unicellularity of convolution operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 36-53. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a3/