On polynomials of the best approximation in the Hausdorff metric
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 130-143

Voir la notice de l'article provenant de la source Math-Net.Ru

A definition of the Hausdorff alternance is given. In these terms we obtain a sufficient condition for an algebraic polynomial to have minimal deviation from the function $f$ in the Hausdorff $\alpha$-metric. A condition under which a polynomial $P_n$ is the unique polynomial of best approximation to a function $f$, as well as a necessary condition for $P_n$ to have minimal deviation from $f$ are established. Also, similar theorems for $2\pi$-periodic functions are stated. Bibliography: 3 titles.
@article{ZNSL_1994_217_a10,
     author = {A. P. Petukhov},
     title = {On polynomials of the best approximation in the {Hausdorff} metric},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--143},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a10/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - On polynomials of the best approximation in the Hausdorff metric
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 130
EP  - 143
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a10/
LA  - ru
ID  - ZNSL_1994_217_a10
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T On polynomials of the best approximation in the Hausdorff metric
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 130-143
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a10/
%G ru
%F ZNSL_1994_217_a10
A. P. Petukhov. On polynomials of the best approximation in the Hausdorff metric. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 130-143. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a10/