Protuberance effect in the generalized Strassen--R\'ev\'esz law
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 13, Tome 216 (1994), pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The set increments of the Wiener process $$ V_T=\{a^{-1/2}[W(\tau+a_T\cdot)-W(\tau)],\ 0\le\tau\le T-a_T\}, $$ $L_T=(2[\log(T/a_T)+\log\log T])^{1/2}$ is considered. Under assumption $\log(T/a_T)/\log\log T\to c$ the set $V_T$ oscillates between $b\mathbb K$ and $\mathbb K$, where $b=[c/(c+1)]^{1/2}$ and $\mathbb K$ is the Strassen ball. Bibliography: 9 titles.
@article{ZNSL_1994_216_a3,
     author = {P. Deheuvels and M. A. Lifshits},
     title = {Protuberance effect in the generalized {Strassen--R\'ev\'esz} law},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {216},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/}
}
TY  - JOUR
AU  - P. Deheuvels
AU  - M. A. Lifshits
TI  - Protuberance effect in the generalized Strassen--R\'ev\'esz law
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 33
EP  - 41
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/
LA  - ru
ID  - ZNSL_1994_216_a3
ER  - 
%0 Journal Article
%A P. Deheuvels
%A M. A. Lifshits
%T Protuberance effect in the generalized Strassen--R\'ev\'esz law
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 33-41
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/
%G ru
%F ZNSL_1994_216_a3
P. Deheuvels; M. A. Lifshits. Protuberance effect in the generalized Strassen--R\'ev\'esz law. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 13, Tome 216 (1994), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/