Protuberance effect in the generalized Strassen–Révész law
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 13, Tome 216 (1994), pp. 33-41
Cet article a éte moissonné depuis la source Math-Net.Ru
The set increments of the Wiener process $$ V_T=\{a^{-1/2}[W(\tau+a_T\cdot)-W(\tau)],\ 0\le\tau\le T-a_T\}, $$ $L_T=(2[\log(T/a_T)+\log\log T])^{1/2}$ is considered. Under assumption $\log(T/a_T)/\log\log T\to c$ the set $V_T$ oscillates between $b\mathbb K$ and $\mathbb K$, where $b=[c/(c+1)]^{1/2}$ and $\mathbb K$ is the Strassen ball. Bibliography: 9 titles.
@article{ZNSL_1994_216_a3,
author = {P. Deheuvels and M. A. Lifshits},
title = {Protuberance effect in the generalized {Strassen{\textendash}R\'ev\'esz} law},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--41},
year = {1994},
volume = {216},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/}
}
P. Deheuvels; M. A. Lifshits. Protuberance effect in the generalized Strassen–Révész law. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 13, Tome 216 (1994), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_1994_216_a3/