The zero-curvature representation for nonlinear $O(3)$ sigma-model
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 100-114
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $O(З)$ sigma-model as a reduction of the principal chiral field. This approach allows to introduce the currents with ultralocal Poisson brackets and to obtain the zero-curvature equation which admits the fundamental Poisson bracket. Bibliography: 5 titles.
@article{ZNSL_1994_215_a5,
author = {A. G. Bytsko},
title = {The zero-curvature representation for nonlinear $O(3)$ sigma-model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--114},
publisher = {mathdoc},
volume = {215},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/}
}
A. G. Bytsko. The zero-curvature representation for nonlinear $O(3)$ sigma-model. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 100-114. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/