The zero-curvature representation for nonlinear $O(3)$ sigma-model
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 100-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $O(З)$ sigma-model as a reduction of the principal chiral field. This approach allows to introduce the currents with ultralocal Poisson brackets and to obtain the zero-curvature equation which admits the fundamental Poisson bracket. Bibliography: 5 titles.
@article{ZNSL_1994_215_a5,
     author = {A. G. Bytsko},
     title = {The zero-curvature representation for nonlinear $O(3)$ sigma-model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--114},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/}
}
TY  - JOUR
AU  - A. G. Bytsko
TI  - The zero-curvature representation for nonlinear $O(3)$ sigma-model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 100
EP  - 114
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/
LA  - ru
ID  - ZNSL_1994_215_a5
ER  - 
%0 Journal Article
%A A. G. Bytsko
%T The zero-curvature representation for nonlinear $O(3)$ sigma-model
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 100-114
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/
%G ru
%F ZNSL_1994_215_a5
A. G. Bytsko. The zero-curvature representation for nonlinear $O(3)$ sigma-model. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 100-114. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a5/