Supersymmetry on noncompact manifolds and complex geometry
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 77-99

Voir la notice de l'article provenant de la source Math-Net.Ru

The special properties of the realizations of supersymmetry on noncompact manifolds are discussed. On the basis of the supersymmetric scattering theory and the supersymmetric trace formulas the absolute or relative Euuler characteristic of an obstacle in $R^N$ may be obtained from scattering data for the Laplace operator on forms with absolute or relative boundary conditions. The analytic expression for the topological index of the map from the stationary curve of antihomorphici involution on compact Riemann surface to the real circle on the Riemann sphere generated by real meromorphic function is obtained from supersymmetric quantum mechanics with meromorphic superpotetial on Klein surface. Bibliography: 27 titles.
@article{ZNSL_1994_215_a4,
     author = {N. V. Borisov and K. N. Ilinski},
     title = {Supersymmetry on noncompact manifolds and complex geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--99},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a4/}
}
TY  - JOUR
AU  - N. V. Borisov
AU  - K. N. Ilinski
TI  - Supersymmetry on noncompact manifolds and complex geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 77
EP  - 99
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a4/
LA  - ru
ID  - ZNSL_1994_215_a4
ER  - 
%0 Journal Article
%A N. V. Borisov
%A K. N. Ilinski
%T Supersymmetry on noncompact manifolds and complex geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 77-99
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a4/
%G ru
%F ZNSL_1994_215_a4
N. V. Borisov; K. N. Ilinski. Supersymmetry on noncompact manifolds and complex geometry. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 77-99. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a4/