On algebraic-geometrical parametrization of the constant mean curvature tori
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 50-64

Voir la notice de l'article provenant de la source Math-Net.Ru

A Theorem is proved providing local coordinates for the constant mean curvature tori in $\mathbb R^3$. Related algebraic-geometrical problems arising in analysis of complex spectra deformations are discussed. Bibliography: 17 titles.
@article{ZNSL_1994_215_a2,
     author = {R. F. Bikbaev},
     title = {On algebraic-geometrical parametrization of the constant mean curvature tori},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a2/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - On algebraic-geometrical parametrization of the constant mean curvature tori
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 50
EP  - 64
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a2/
LA  - en
ID  - ZNSL_1994_215_a2
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T On algebraic-geometrical parametrization of the constant mean curvature tori
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 50-64
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a2/
%G en
%F ZNSL_1994_215_a2
R. F. Bikbaev. On algebraic-geometrical parametrization of the constant mean curvature tori. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 50-64. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a2/