On estimate of the order of primitive permutation groups
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 256-263
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a primitive permutation group of degree $n$. Then $|G|\le nd^m$, where $d$ is the minimal order of a nontrivial orbit of the stabilizer of $G$ and $m$ is the minimal degree of a nonunity irreducible representation of $g$ occuring the permutation representation. Bibliography: 8 titles.
@article{ZNSL_1994_215_a16,
author = {I. N. Ponomarenko},
title = {On estimate of the order of primitive permutation groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {256--263},
publisher = {mathdoc},
volume = {215},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a16/}
}
I. N. Ponomarenko. On estimate of the order of primitive permutation groups. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 256-263. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a16/