Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin--Voight fluids and Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 246-255
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the global classical solvability on the semiaxes $t\in\mathbb R^+$ of the first initial-boundary value problem for two-dimensional perturbed equations (11) and three-dimensional perturbed equations (12) and (13), and also we study the convergence for $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first boundaryvalue problem for the equations (8), (9) and (10). Bibliography: 10 titles.
@article{ZNSL_1994_215_a15,
author = {A. P. Oskolkov},
title = {Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of {Kelvin--Voight} fluids and {Oldroyd} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {246--255},
publisher = {mathdoc},
volume = {215},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/}
}
TY - JOUR AU - A. P. Oskolkov TI - Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin--Voight fluids and Oldroyd fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 246 EP - 255 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/ LA - ru ID - ZNSL_1994_215_a15 ER -
%0 Journal Article %A A. P. Oskolkov %T Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin--Voight fluids and Oldroyd fluids %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 246-255 %V 215 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/ %G ru %F ZNSL_1994_215_a15
A. P. Oskolkov. Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin--Voight fluids and Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 246-255. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/