Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 246-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the global classical solvability on the semiaxes $t\in\mathbb R^+$ of the first initial-boundary value problem for two-dimensional perturbed equations (11) and three-dimensional perturbed equations (12) and (13), and also we study the convergence for $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first boundaryvalue problem for the equations (8), (9) and (10). Bibliography: 10 titles.
@article{ZNSL_1994_215_a15,
     author = {A. P. Oskolkov},
     title = {Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of {Kelvin{\textendash}Voight} fluids and {Oldroyd} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--255},
     year = {1994},
     volume = {215},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 246
EP  - 255
VL  - 215
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/
LA  - ru
ID  - ZNSL_1994_215_a15
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 246-255
%V 215
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/
%G ru
%F ZNSL_1994_215_a15
A. P. Oskolkov. Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 246-255. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a15/