An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 217-225
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $0\alpha$, $0$, $m$ a positive integer, let $f$ a function defined on a plane convex domain $G$. Denote by $E_m(f,L_p(G))$ the best approximation of $f$ in $L_p(G)$ by algebraic polynomials of degree $m$. A description of functions $f\in L_p(G)$ such that inequalities hold
$$
E_m(f,L_p(G))\le Cm^{-\alpha},\qquad m=1,2,\dots,
$$
is given. Bibliography: 7 titles.
@article{ZNSL_1994_215_a13,
author = {Yu. V. Netrusov},
title = {An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {217--225},
publisher = {mathdoc},
volume = {215},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a13/}
}
TY - JOUR AU - Yu. V. Netrusov TI - An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 217 EP - 225 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a13/ LA - ru ID - ZNSL_1994_215_a13 ER -
%0 Journal Article %A Yu. V. Netrusov %T An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 217-225 %V 215 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a13/ %G ru %F ZNSL_1994_215_a13
Yu. V. Netrusov. An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 217-225. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a13/