Do nonsingular globaly bounded positon solutions exist?
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 38-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The positon solutions discovered so far for several nonlinear evolution equations are singular solutions. It is shown that for a discrete version of the well known sinh-Gordon equation non-singular positon solutions exist. Under appropriate restrictions on the parameters of the construction they are globaly bounded. In the continuum limit the corresponding (singular) solutions of the sinh-Gordon equation are recovered. Bibliography: 11 titles.
@article{ZNSL_1994_215_a1,
     author = {Roland Beutler and Vladimir B. Matveev},
     title = {Do nonsingular globaly bounded positon solutions exist?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/}
}
TY  - JOUR
AU  - Roland Beutler
AU  - Vladimir B. Matveev
TI  - Do nonsingular globaly bounded positon solutions exist?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 38
EP  - 49
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/
LA  - en
ID  - ZNSL_1994_215_a1
ER  - 
%0 Journal Article
%A Roland Beutler
%A Vladimir B. Matveev
%T Do nonsingular globaly bounded positon solutions exist?
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 38-49
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/
%G en
%F ZNSL_1994_215_a1
Roland Beutler; Vladimir B. Matveev. Do nonsingular globaly bounded positon solutions exist?. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 38-49. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/