Do nonsingular globaly bounded positon solutions exist?
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 38-49
Voir la notice de l'article provenant de la source Math-Net.Ru
The positon solutions discovered so far for several nonlinear evolution equations are singular solutions. It is shown that for a discrete version of the well known sinh-Gordon equation non-singular positon solutions exist. Under appropriate restrictions on the parameters of the construction they are globaly bounded. In the continuum limit the corresponding (singular) solutions of the sinh-Gordon equation are recovered. Bibliography: 11 titles.
@article{ZNSL_1994_215_a1,
author = {Roland Beutler and Vladimir B. Matveev},
title = {Do nonsingular globaly bounded positon solutions exist?},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {38--49},
publisher = {mathdoc},
volume = {215},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/}
}
Roland Beutler; Vladimir B. Matveev. Do nonsingular globaly bounded positon solutions exist?. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 38-49. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a1/