Operator integral in multidimensional spectral Inverse Problem
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 9-37

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the Inverse Problems based upon the Boundary Control Theory (BC-method; M. Belishev, 1986) is developed. Working effectively in the Inverse Problems, M. Brodskii's operator integral is introduced. It has a dynamical nature connected with a propogation of discontinuities of the wave fields. Operator integral is applied to solve the problem of recovering of a potential in the Schrödinger operator on a Riemannian manifold via its spectral data. Bibliography: 27 titles.
@article{ZNSL_1994_215_a0,
     author = {M. I. Belishev and A. P. Kachalov},
     title = {Operator integral in multidimensional spectral {Inverse} {Problem}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--37},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a0/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. P. Kachalov
TI  - Operator integral in multidimensional spectral Inverse Problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 9
EP  - 37
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a0/
LA  - ru
ID  - ZNSL_1994_215_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. P. Kachalov
%T Operator integral in multidimensional spectral Inverse Problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 9-37
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a0/
%G ru
%F ZNSL_1994_215_a0
M. I. Belishev; A. P. Kachalov. Operator integral in multidimensional spectral Inverse Problem. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 9-37. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a0/