Some remarks on variational problems for functionals with $L\ln L$ growth
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 164-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Regularity for minimizers of the functional $\int_\Omega|\nabla v|\ln(1+|\nabla v|)\,dx$ on a set of vector-valued functions $v\colon\Omega\subset\mathbb R^n\to\mathbb R^n$, taking prescribed values on the boundary $\partial\Omega$, is studied. It is shown that solution of the dual variational problem belong to the class $W^1_{2,\mathrm{loc}}$. In the case $n=2$ a higher integrability for minimizers of the direct variational problem is proved. Bibliography: 5 titles.
@article{ZNSL_1994_213_a9,
author = {G. A. Seregin},
title = {Some remarks on variational problems for functionals with $L\ln L$ growth},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--178},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a9/}
}
G. A. Seregin. Some remarks on variational problems for functionals with $L\ln L$ growth. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 164-178. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a9/