Reciprocal transformations for the radial nonlinear heat equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 151-163
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonlocal transformations of a number of the quasilinear parabolic equations describing spherically symmetrical heat conduction and diffusion processes are considered. One of them transforms the equation $r^{n-1}\theta_r=(r^{n-1}|\theta_r|^l\theta_r)_r$ into equation of the same type but with another value of the exponent $n$. Other transformation converts the equation $r^{n-1}\theta_t=(r^{n-1}\theta^{-2}\theta_r)_r$ into equation whose coefficients do not depend on space variable. The third nonlocal transformation holds invariant the equation $r\theta_r=(r\theta^{-1}\theta_r)_r$. Some exact solutions of the mentioned equations are analysed incidentally. Bibliography: 15 titles.
@article{ZNSL_1994_213_a8,
author = {V. V. Pukhnachov},
title = {Reciprocal transformations for the radial nonlinear heat equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--163},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/}
}
V. V. Pukhnachov. Reciprocal transformations for the radial nonlinear heat equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 151-163. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/