Reciprocal transformations for the radial nonlinear heat equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 151-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal transformations of a number of the quasilinear parabolic equations describing spherically symmetrical heat conduction and diffusion processes are considered. One of them transforms the equation $r^{n-1}\theta_r=(r^{n-1}|\theta_r|^l\theta_r)_r$ into equation of the same type but with another value of the exponent $n$. Other transformation converts the equation $r^{n-1}\theta_t=(r^{n-1}\theta^{-2}\theta_r)_r$ into equation whose coefficients do not depend on space variable. The third nonlocal transformation holds invariant the equation $r\theta_r=(r\theta^{-1}\theta_r)_r$. Some exact solutions of the mentioned equations are analysed incidentally. Bibliography: 15 titles.
@article{ZNSL_1994_213_a8,
     author = {V. V. Pukhnachov},
     title = {Reciprocal transformations for the radial nonlinear heat equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--163},
     publisher = {mathdoc},
     volume = {213},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/}
}
TY  - JOUR
AU  - V. V. Pukhnachov
TI  - Reciprocal transformations for the radial nonlinear heat equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 151
EP  - 163
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/
LA  - ru
ID  - ZNSL_1994_213_a8
ER  - 
%0 Journal Article
%A V. V. Pukhnachov
%T Reciprocal transformations for the radial nonlinear heat equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 151-163
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/
%G ru
%F ZNSL_1994_213_a8
V. V. Pukhnachov. Reciprocal transformations for the radial nonlinear heat equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 151-163. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a8/