The connection of the two-phase medium state with the surface-tension coefficient and temperature
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 131-150
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence theorem of the variational problem for the two-phase medium energy functional is proved. It is stated the dependence of the solution on the parameters of the surface-tension coefficient and temperature. Bibliography: 7 titles.
@article{ZNSL_1994_213_a7,
author = {V. G. Osmolovski},
title = {The connection of the two-phase medium state with the surface-tension coefficient and temperature},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--150},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a7/}
}
TY - JOUR AU - V. G. Osmolovski TI - The connection of the two-phase medium state with the surface-tension coefficient and temperature JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 131 EP - 150 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a7/ LA - ru ID - ZNSL_1994_213_a7 ER -
V. G. Osmolovski. The connection of the two-phase medium state with the surface-tension coefficient and temperature. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 131-150. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a7/