Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier--Stokes equations.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 116-130
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove global existence of time-periodic classical solutions $v^\varepsilon$ of dissipative $\varepsilon$-approximations (4)–(6) for three-dimensional modified Navier–Stokes equations (1)–(3) satysfying a first boundary condition, and also we study the convergence for $\varepsilon\to0$ of solutions $\{v^\varepsilon\}$ to time-periodic classical solutions $v$ of equations (1)–(3) respectively. Bibliography: 21 titles.
@article{ZNSL_1994_213_a6,
author = {A. P. Oskolkov},
title = {Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified {Navier--Stokes} equations.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--130},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a6/}
}
TY - JOUR AU - A. P. Oskolkov TI - Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier--Stokes equations. JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 116 EP - 130 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a6/ LA - ru ID - ZNSL_1994_213_a6 ER -
%0 Journal Article %A A. P. Oskolkov %T Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier--Stokes equations. %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 116-130 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a6/ %G ru %F ZNSL_1994_213_a6
A. P. Oskolkov. Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier--Stokes equations.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 116-130. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a6/