Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 93-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the global classical solvability on the semiaxis $t\in\mathbb R^+$ of the second initial-boundary value problem with a free surface condition (0.1) for other modified Navier–Stokes equations: Ladyzhenskaya's equations (0.3), equations of Jeffrey–Oldroyd fluids (0.4), equations of Kelvin–Voight fluids (0.5) and equations of aqueous solutions of polymers (0.6). Bibliography: 31 titles.
@article{ZNSL_1994_213_a5,
     author = {A. P. Oskolkov},
     title = {Initial-boundary value problem with a~free surface condition for the modified {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--115},
     year = {1994},
     volume = {213},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 93
EP  - 115
VL  - 213
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/
LA  - ru
ID  - ZNSL_1994_213_a5
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 93-115
%V 213
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/
%G ru
%F ZNSL_1994_213_a5
A. P. Oskolkov. Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 93-115. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/