Initial-boundary value problem with a~free surface condition for the modified Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 93-115
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the global classical solvability on the semiaxis $t\in\mathbb R^+$ of the second initial-boundary value problem with a free surface condition (0.1) for other modified Navier–Stokes equations: Ladyzhenskaya's equations (0.3), equations of Jeffrey–Oldroyd fluids (0.4), equations of Kelvin–Voight fluids (0.5) and equations of aqueous solutions of polymers (0.6). Bibliography: 31 titles.
@article{ZNSL_1994_213_a5,
author = {A. P. Oskolkov},
title = {Initial-boundary value problem with a~free surface condition for the modified {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--115},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/}
}
TY - JOUR AU - A. P. Oskolkov TI - Initial-boundary value problem with a~free surface condition for the modified Navier--Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 93 EP - 115 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/ LA - ru ID - ZNSL_1994_213_a5 ER -
A. P. Oskolkov. Initial-boundary value problem with a~free surface condition for the modified Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 93-115. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a5/