Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 75-92
Voir la notice de l'article provenant de la source Math-Net.Ru
An estimate of $\max_{\Omega'}|u_x^\varepsilon|$, $\Omega'\subset\subset\Omega$, for solutions $u^\varepsilon$ to the family of equations
$$
-\frac d{dx_i}\,\frac{u_{x_i}}{\sqrt{1+u^2_x}}-\varepsilon\Delta u+a(x,u,u_x)=0,\qquad x\in\Omega,\quad\varepsilon\in(0,1],
$$
with a non-differentiated lower term $a$ is given. A majorant in the estimate depends on $\max_{\Omega'}|u_x^\varepsilon|$ and the distance between $\Omega'$ and $\partial\Omega$, but does not depend on $\varepsilon$. The publication has relations with the work [2] and [3]. Bibliography: 4 titles.
@article{ZNSL_1994_213_a4,
author = {O. A. Ladyzhenskaya and N. N. Uraltseva},
title = {Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--92},
publisher = {mathdoc},
volume = {213},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/}
}
TY - JOUR AU - O. A. Ladyzhenskaya AU - N. N. Uraltseva TI - Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 75 EP - 92 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/ LA - ru ID - ZNSL_1994_213_a4 ER -
%0 Journal Article %A O. A. Ladyzhenskaya %A N. N. Uraltseva %T Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 75-92 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/ %G ru %F ZNSL_1994_213_a4
O. A. Ladyzhenskaya; N. N. Uraltseva. Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 75-92. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/