Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 75-92

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of $\max_{\Omega'}|u_x^\varepsilon|$, $\Omega'\subset\subset\Omega$, for solutions $u^\varepsilon$ to the family of equations $$ -\frac d{dx_i}\,\frac{u_{x_i}}{\sqrt{1+u^2_x}}-\varepsilon\Delta u+a(x,u,u_x)=0,\qquad x\in\Omega,\quad\varepsilon\in(0,1], $$ with a non-differentiated lower term $a$ is given. A majorant in the estimate depends on $\max_{\Omega'}|u_x^\varepsilon|$ and the distance between $\Omega'$ and $\partial\Omega$, but does not depend on $\varepsilon$. The publication has relations with the work [2] and [3]. Bibliography: 4 titles.
@article{ZNSL_1994_213_a4,
     author = {O. A. Ladyzhenskaya and N. N. Uraltseva},
     title = {Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--92},
     publisher = {mathdoc},
     volume = {213},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
AU  - N. N. Uraltseva
TI  - Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 75
EP  - 92
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/
LA  - ru
ID  - ZNSL_1994_213_a4
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%A N. N. Uraltseva
%T Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 75-92
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/
%G ru
%F ZNSL_1994_213_a4
O. A. Ladyzhenskaya; N. N. Uraltseva. Local estimates of the gradients of solution to a~simplest regularisation for some class of nonuniformly elliptic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 75-92. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a4/