On conditions of solvability of the Dirichlet problem for $m$-curvature equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 66-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the ensharpened variant of the Jenkins–Serrin–Trudinger condition relating to the Dirichlet problem for curvature equations. New condition provides the classical solvability to the Hauss curvature equation in the case of positive curvature, which sufficiently small on the boundary. Bibliography: 8 titles.
@article{ZNSL_1994_213_a3,
     author = {N. M. Ivochkina},
     title = {On conditions of solvability of the {Dirichlet} problem for $m$-curvature equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--74},
     publisher = {mathdoc},
     volume = {213},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a3/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - On conditions of solvability of the Dirichlet problem for $m$-curvature equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 66
EP  - 74
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a3/
LA  - ru
ID  - ZNSL_1994_213_a3
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T On conditions of solvability of the Dirichlet problem for $m$-curvature equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 66-74
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a3/
%G ru
%F ZNSL_1994_213_a3
N. M. Ivochkina. On conditions of solvability of the Dirichlet problem for $m$-curvature equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 66-74. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a3/