Existence and uniqueness of regular solution of Cauchy--Dirichlet problem for some class of doubly nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 48-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of equations of the type \begin{equation} \partial u/\partial t-\operatorname{div}\vec a(u,\nabla u)=f, \tag{1} \end{equation} such that \begin{equation} \begin{gathered} \vec a(u,p)\cdot p\ge\nu_0|u|^l|p|^m-\Phi_0(u),\\ |\vec a(u,p)|\le\mu_1|u|^l|p|^{m-1}+\Phi_1(u) \end{gathered} \tag{2} \end{equation} with some $m\in(1,2)$, $l\ge0$ and $\Phi_i(u)\ge0$ is studied. Similar equations arise in the study of turbulent filtration of gas or a liquid through porous media. Existence and uniqueness in some class of Hölder continuous generalized solutions of Cauchy–Dirichlet problem for equations of the type (1), (2) is proved. Bibliography: 9 titles.
@article{ZNSL_1994_213_a2,
     author = {A. V. Ivanov and P. Z. Mkrtychian and W. J\"ager},
     title = {Existence and uniqueness of regular solution of {Cauchy--Dirichlet} problem for some class of doubly nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--65},
     publisher = {mathdoc},
     volume = {213},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - P. Z. Mkrtychian
AU  - W. Jäger
TI  - Existence and uniqueness of regular solution of Cauchy--Dirichlet problem for some class of doubly nonlinear parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 48
EP  - 65
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a2/
LA  - ru
ID  - ZNSL_1994_213_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A P. Z. Mkrtychian
%A W. Jäger
%T Existence and uniqueness of regular solution of Cauchy--Dirichlet problem for some class of doubly nonlinear parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 48-65
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a2/
%G ru
%F ZNSL_1994_213_a2
A. V. Ivanov; P. Z. Mkrtychian; W. Jäger. Existence and uniqueness of regular solution of Cauchy--Dirichlet problem for some class of doubly nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Tome 213 (1994), pp. 48-65. http://geodesic.mathdoc.fr/item/ZNSL_1994_213_a2/