Euler decompositions for theta-series of even quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 97-113
Voir la notice de l'article provenant de la source Math-Net.Ru
For a generating Dirichlet vector series with coefficients equal to the number of representations of a quadratic form by another one we abtain a decomposition into the product of a finite number of Dirichlet $L$-functions and an infinite number of matrix polynomials. The coefficients of the polynomials are the Eichler–Brandt matrices of the basis double cosets of the local orthogonal Hecke rings. Bibliography: 3 titles.
@article{ZNSL_1994_212_a6,
author = {V. G. Zhuravlev},
title = {Euler decompositions for theta-series of even quadratic forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--113},
publisher = {mathdoc},
volume = {212},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/}
}
V. G. Zhuravlev. Euler decompositions for theta-series of even quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 97-113. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/