Euler decompositions for theta-series of even quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 97-113

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generating Dirichlet vector series with coefficients equal to the number of representations of a quadratic form by another one we abtain a decomposition into the product of a finite number of Dirichlet $L$-functions and an infinite number of matrix polynomials. The coefficients of the polynomials are the Eichler–Brandt matrices of the basis double cosets of the local orthogonal Hecke rings. Bibliography: 3 titles.
@article{ZNSL_1994_212_a6,
     author = {V. G. Zhuravlev},
     title = {Euler decompositions for theta-series of even quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--113},
     publisher = {mathdoc},
     volume = {212},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Euler decompositions for theta-series of even quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 97
EP  - 113
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/
LA  - ru
ID  - ZNSL_1994_212_a6
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Euler decompositions for theta-series of even quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 97-113
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/
%G ru
%F ZNSL_1994_212_a6
V. G. Zhuravlev. Euler decompositions for theta-series of even quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 97-113. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a6/