The value regions of initial coefficients in a~certain class of meromorphic functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 91-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M_{k,\lambda}$ ($0\le\lambda\le1$, $k\ge2$) be the class of functions
$$
f(z)=1/z+a_0+a_1z+\dots,
$$
that are regular and locally univalent for $0|z|1$ and satisfy the condition
$$
\lim_{r\to1-}\int_0^{2\pi}|\operatorname{Re}J+\lambda(re^{i\theta})|\,d\theta\le k\pi,
$$
where
$$
J_\lambda(z)=\lambda(1+zf''(z)/f'(z))+(1-\lambda)zf'(z)/f(z).
$$
In the class $M_{k,\lambda}$ we consider sorne coefficient problems and problems concerning distortion theorems. Bibliography: 6 titles.
@article{ZNSL_1994_212_a5,
author = {E. G. Goluzina},
title = {The value regions of initial coefficients in a~certain class of meromorphic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--96},
publisher = {mathdoc},
volume = {212},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a5/}
}
E. G. Goluzina. The value regions of initial coefficients in a~certain class of meromorphic functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 91-96. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a5/