Spectral decomposition of convolutions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 71-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a spectral decomposition for number-theoretic convolutions of the form $\tau(n)\times\tau(n\pm l;\chi_q)$ where the function $\tau$ is the number of divisors, $\chi_q$ is the quadratic Dirichlet character of module $q$, $l$ is a fixed shift, and $n$ is the summation parameter. This is done by using the shortened functional equation for the convolution, obtained by the author (Zap. Nauchn. Semin. POMI, 211, 104–119 (1994)). A presentation using the vector-matrix language is conducted for two convolutions with shifts $\pm l$ simultaneously, which simplifies symbolic writing of the spectral decompositions. Bibliography: 5 titles.
@article{ZNSL_1994_212_a4,
author = {A. I. Vinogradov},
title = {Spectral decomposition of convolutions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--90},
publisher = {mathdoc},
volume = {212},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/}
}
A. I. Vinogradov. Spectral decomposition of convolutions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 71-90. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/