Spectral decomposition of convolutions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 71-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a spectral decomposition for number-theoretic convolutions of the form $\tau(n)\times\tau(n\pm l;\chi_q)$ where the function $\tau$ is the number of divisors, $\chi_q$ is the quadratic Dirichlet character of module $q$, $l$ is a fixed shift, and $n$ is the summation parameter. This is done by using the shortened functional equation for the convolution, obtained by the author (Zap. Nauchn. Semin. POMI, 211, 104–119 (1994)). A presentation using the vector-matrix language is conducted for two convolutions with shifts $\pm l$ simultaneously, which simplifies symbolic writing of the spectral decompositions. Bibliography: 5 titles.
@article{ZNSL_1994_212_a4,
     author = {A. I. Vinogradov},
     title = {Spectral decomposition of convolutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--90},
     publisher = {mathdoc},
     volume = {212},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Spectral decomposition of convolutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 71
EP  - 90
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/
LA  - ru
ID  - ZNSL_1994_212_a4
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Spectral decomposition of convolutions
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 71-90
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/
%G ru
%F ZNSL_1994_212_a4
A. I. Vinogradov. Spectral decomposition of convolutions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 71-90. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a4/