Distribution of lattice points on surfaces of second order
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 164-195
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f_1(x_1,\dots,x_{l_1})$ and $f_2(y_1,\dots,y_{l_2})$ be positive definite primitive quadratic forms in $l_1$ and $l_2$ variables, respectively. We obtain new results in the well-known problem on the number of lattice points on the cone $f_1(x_1,\dots,x_{l_1})=f_2(y_1,\dots,y_{l_2})$, in the domain $f_1(x_1,\dots,x_{l_1})\le N$ for $N\to\infty$. Our technical tool is the Rankin–Selberg convolution. In several special cases the results can be sharpened by other methods. In addition, new facts concerning the uniform distribution of lattice points on ellipsoids in $l$ variables, $l$ odd, $l\ge5$ are obtained. Bibliography: 40 titles.
@article{ZNSL_1994_212_a10,
author = {O. M. Fomenko},
title = {Distribution of lattice points on surfaces of second order},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--195},
publisher = {mathdoc},
volume = {212},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a10/}
}
O. M. Fomenko. Distribution of lattice points on surfaces of second order. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 12, Tome 212 (1994), pp. 164-195. http://geodesic.mathdoc.fr/item/ZNSL_1994_212_a10/