The normalizer of the automorphism group of a module arising under extension of the base ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 133-135
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Lambda$ te an arbitrary associative ring with unity and let $R$ be its unital subring contained in the center of $\Lambda$. Further, let $M=_\Lambda M$ be a left free $\Lambda$-module of finite rank. In this paper, the normalizer of the subgroup $\mathrm{Aut}(_\Lambda M)$ of automorphisms of the module $_\Lambda M$ in the group $\mathrm{Aut}(_RM)$ of automorphisms of the moduleRM is computed. If the ring $\Lambda$ is additively generated by its invertible elements, then the above normalizer coincides with the semidirect product of the normal subgroup $\mathrm{Aut}(_\Lambda M)$ and a subgroup isomorphic to the group $\mathrm{Aut}(\Lambda/R)$ of all ring automorphisms of the ring $\Lambda$ that are identical on $R$. Bibliography: 1 title.
@article{ZNSL_1994_211_a9,
author = {V. A. Koibaev},
title = {The normalizer of the automorphism group of a~module arising under extension of the base ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--135},
year = {1994},
volume = {211},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a9/}
}
V. A. Koibaev. The normalizer of the automorphism group of a module arising under extension of the base ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 133-135. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a9/