A shortened equation for convolutions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 104-119
Cet article a éte moissonné depuis la source Math-Net.Ru
The zeta functions of convolutions are Dirichlet series of the general form $\sum^\infty a_n\cdot n^{-s}$ therefore, they are well convergent in the right half-plane $\operatorname{Re}s>1$. In the critical strip $\operatorname{re}s\in(0,1)$ the convolutions can be represented in terms of the Linnik–Selberg zeta functions whose coefficients are Kloosterman sums. In the present paper, these two representations are combined into a single representation in the same way as the shortened equation for the classical Riemann zeta function. Bibliography: 10 titles.
@article{ZNSL_1994_211_a6,
author = {A. I. Vinogradov},
title = {A shortened equation for convolutions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--119},
year = {1994},
volume = {211},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/}
}
A. I. Vinogradov. A shortened equation for convolutions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 104-119. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/