A shortened equation for convolutions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 104-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The zeta functions of convolutions are Dirichlet series of the general form $\sum^\infty a_n\cdot n^{-s}$ therefore, they are well convergent in the right half-plane $\operatorname{Re}s>1$. In the critical strip $\operatorname{re}s\in(0,1)$ the convolutions can be represented in terms of the Linnik–Selberg zeta functions whose coefficients are Kloosterman sums. In the present paper, these two representations are combined into a single representation in the same way as the shortened equation for the classical Riemann zeta function. Bibliography: 10 titles.
@article{ZNSL_1994_211_a6,
     author = {A. I. Vinogradov},
     title = {A shortened equation for convolutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--119},
     year = {1994},
     volume = {211},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - A shortened equation for convolutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 104
EP  - 119
VL  - 211
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/
LA  - ru
ID  - ZNSL_1994_211_a6
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T A shortened equation for convolutions
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 104-119
%V 211
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/
%G ru
%F ZNSL_1994_211_a6
A. I. Vinogradov. A shortened equation for convolutions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 104-119. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a6/