The subgroups of the special linear group over a skew field that contain the group of diagonal matrices
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 91-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For any (noncommutative) skew field $T$, the lattice of subgroups of the special linear group $\Gamma=\mathrm{SL}(n,T)$ that contain the subgroup $\Delta=\mathrm{SD}(n,T)$ of diagonal matrices (with Dieudonné determinants equal to 1) is studied. It is established that for any subgroup $H$, $\Delta\le H\le\Gamma$, there exists a uniquely determined unital net $\sigma$ such that $\Gamma(\sigma)\le H\le\mathcal N(\sigma)$, where $\Gamma(\sigma)$ is the net subgroup associated with the net $\sigma$ and $\mathcal N(\sigma)$ is its normalizer in $\Gamma$. Bibliography: 11 titles.
@article{ZNSL_1994_211_a5,
     author = {Bui Xuan Hai},
     title = {The subgroups of the special linear group over a skew field that contain the group of diagonal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--103},
     year = {1994},
     volume = {211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a5/}
}
TY  - JOUR
AU  - Bui Xuan Hai
TI  - The subgroups of the special linear group over a skew field that contain the group of diagonal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 91
EP  - 103
VL  - 211
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a5/
LA  - en
ID  - ZNSL_1994_211_a5
ER  - 
%0 Journal Article
%A Bui Xuan Hai
%T The subgroups of the special linear group over a skew field that contain the group of diagonal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 91-103
%V 211
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a5/
%G en
%F ZNSL_1994_211_a5
Bui Xuan Hai. The subgroups of the special linear group over a skew field that contain the group of diagonal matrices. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 91-103. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a5/