Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p=2$)
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 80-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $k$ be a dyadic local number field and let $K=k(\sqrt d)$ be an unramified quadratic extension. A complete description is suggested for the intermediate subgroups of the general linear group $\mathrm{G=GL}(2,k)$ of degree 2 over the field $k$ that contain the nonsplit maximal torus $T=T(d)$ (i.e., the image in $\mathrm G$ of the multiplicative group $K^*$ of the field $K$ under the regular embedding). In particular, the torus $T(d)$ is polynormal in $\mathrm{GL}(2,k)$. Bibliography: 11 titles.
@article{ZNSL_1994_211_a4,
     author = {A. A. Bongarenko},
     title = {Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field~($p=2$)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {80--90},
     year = {1994},
     volume = {211},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a4/}
}
TY  - JOUR
AU  - A. A. Bongarenko
TI  - Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p=2$)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 80
EP  - 90
VL  - 211
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a4/
LA  - ru
ID  - ZNSL_1994_211_a4
ER  - 
%0 Journal Article
%A A. A. Bongarenko
%T Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p=2$)
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 80-90
%V 211
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a4/
%G ru
%F ZNSL_1994_211_a4
A. A. Bongarenko. Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p=2$). Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 80-90. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a4/