Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field ($p\ne2$)
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 67-79
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $k$ be a nondyadic local number field and let $K=k(\sqrt\omega)$ be its unramifield quadratic extension. A complete description is suggested for the intermediate subgroups of the general linear group $\mathrm{G=GL}(2,k)$ of degree 2 over the field $k$ that contain the nonsplit maximal torus $T=T(\omega)$ (i.e., the image in $\mathrm G$ of the multiplicative group $K^*$ of the field $K$ under the regular embedding). In particular, the torus $T(\omega)$ is polynormal in $\mathrm{GL}(2,k)$. Bibliography: 11 titles.
@article{ZNSL_1994_211_a3,
author = {A. A. Bongarenko},
title = {Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field ($p\ne2$)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--79},
publisher = {mathdoc},
volume = {211},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a3/}
}
TY - JOUR AU - A. A. Bongarenko TI - Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field ($p\ne2$) JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 67 EP - 79 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a3/ LA - ru ID - ZNSL_1994_211_a3 ER -
%0 Journal Article %A A. A. Bongarenko %T Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field ($p\ne2$) %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 67-79 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a3/ %G ru %F ZNSL_1994_211_a3
A. A. Bongarenko. Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree~2 over a~local number field ($p\ne2$). Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 67-79. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a3/