Net subrings of generalized matrix rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 184-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a ring with the following properties: (a) $\Lambda$ is a direct sum of left ideals $P_1,\dots,p_n$; (b) every nontrivial homomorphism $P_i\to p_j$ is a monomorphism; (c) for every $i,j$ the intersection of any two submodules of $P_j$ isomorphic to $P_i$ contains a submodule isomorphic to $P_i$. Then $\Lambda$ can be represented as a subring associated with a net of ideals in a generalized matrix ring. Bibliography: 5 titles.
@article{ZNSL_1994_211_a16,
     author = {A. V. Yakovlev},
     title = {Net subrings of generalized matrix rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--198},
     publisher = {mathdoc},
     volume = {211},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a16/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - Net subrings of generalized matrix rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 184
EP  - 198
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a16/
LA  - ru
ID  - ZNSL_1994_211_a16
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T Net subrings of generalized matrix rings
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 184-198
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a16/
%G ru
%F ZNSL_1994_211_a16
A. V. Yakovlev. Net subrings of generalized matrix rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 184-198. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a16/