A minimum for the theta function in three variables and the solution of the Rankin--Sobolev problem in a~three-dimensional space
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 150-157
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, an absolute minimum is found for the specialized theta function defined by a positive-definite ternery quadratic form with real coefficients. The result obtained yields an absolute minimum for the Epstein zeta function of the corresponding form. Bibliography: 15 titles.
@article{ZNSL_1994_211_a12,
author = {E. V. Orlovskaya},
title = {A minimum for the theta function in three variables and the solution of the {Rankin--Sobolev} problem in a~three-dimensional space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--157},
publisher = {mathdoc},
volume = {211},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a12/}
}
TY - JOUR AU - E. V. Orlovskaya TI - A minimum for the theta function in three variables and the solution of the Rankin--Sobolev problem in a~three-dimensional space JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 150 EP - 157 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a12/ LA - ru ID - ZNSL_1994_211_a12 ER -
%0 Journal Article %A E. V. Orlovskaya %T A minimum for the theta function in three variables and the solution of the Rankin--Sobolev problem in a~three-dimensional space %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 150-157 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a12/ %G ru %F ZNSL_1994_211_a12
E. V. Orlovskaya. A minimum for the theta function in three variables and the solution of the Rankin--Sobolev problem in a~three-dimensional space. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 150-157. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a12/