The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 136-145
Voir la notice de l'article provenant de la source Math-Net.Ru
In the group $\mathrm{GL}(2,k)$, the lattice of the intermediate subgroups that contain the maximal nonsplit torus is studied for a field $k$ of characteristic different from 2. In a number of cases, when formulating the results some additional restrictions are imposed. Bibliography: 3 titles.
@article{ZNSL_1994_211_a10,
author = {V. A. Koibaev},
title = {The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--145},
publisher = {mathdoc},
volume = {211},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/}
}
V. A. Koibaev. The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 136-145. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/