The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 136-145

Voir la notice de l'article provenant de la source Math-Net.Ru

In the group $\mathrm{GL}(2,k)$, the lattice of the intermediate subgroups that contain the maximal nonsplit torus is studied for a field $k$ of characteristic different from 2. In a number of cases, when formulating the results some additional restrictions are imposed. Bibliography: 3 titles.
@article{ZNSL_1994_211_a10,
     author = {V. A. Koibaev},
     title = {The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {211},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 136
EP  - 145
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/
LA  - ru
ID  - ZNSL_1994_211_a10
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 136-145
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/
%G ru
%F ZNSL_1994_211_a10
V. A. Koibaev. The subgroups of the group $\mathrm{GL}(2,k)$ that contain a~nonsplit maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 3, Tome 211 (1994), pp. 136-145. http://geodesic.mathdoc.fr/item/ZNSL_1994_211_a10/