Computation of the second term of the ray method series in two and a~half dimension
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 94-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of computation of the second term of the ray method series suggested in our paper in the present issue is specified for the case of two and a half dimensions. It means that elastic parameters of a medium depend on $x,z$ only and source and observation points are placed in one plane orthogonal to $y$ axes. Thus to compute the wave field we need to take into account the rays which are placed in the plane. It enables us to simplify the algorithm. We consider the algorithm in detail for the case of the point source. Bibliography: 4 titles.
@article{ZNSL_1994_210_a8,
     author = {N. Ya. Kirpichnikova and M. M. Popov},
     title = {Computation of the second term of the ray method series in two and a~half dimension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--108},
     publisher = {mathdoc},
     volume = {210},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a8/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - M. M. Popov
TI  - Computation of the second term of the ray method series in two and a~half dimension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 94
EP  - 108
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a8/
LA  - ru
ID  - ZNSL_1994_210_a8
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A M. M. Popov
%T Computation of the second term of the ray method series in two and a~half dimension
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 94-108
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a8/
%G ru
%F ZNSL_1994_210_a8
N. Ya. Kirpichnikova; M. M. Popov. Computation of the second term of the ray method series in two and a~half dimension. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 94-108. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a8/