On scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with narrow lengthwise split of finite depth
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 65-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The Neumann boundary value problem on plane associated with scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with a narrow lengthwise split of finite depth was considered. Asymptotics respect with to a small parameter (width of split) of solution poles with a small imaginary part was constructed. It has shown that these poles have resonant nature. Bibliography: 5 titles.
@article{ZNSL_1994_210_a6,
     author = {R. R. Gadyl'shin},
     title = {On scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with narrow lengthwise split of finite depth},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {210},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a6/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - On scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with narrow lengthwise split of finite depth
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 65
EP  - 72
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a6/
LA  - ru
ID  - ZNSL_1994_210_a6
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T On scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with narrow lengthwise split of finite depth
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 65-72
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a6/
%G ru
%F ZNSL_1994_210_a6
R. R. Gadyl'shin. On scattering of $H$-polarized electromagnetic field by ideal conductive cylinder with narrow lengthwise split of finite depth. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 65-72. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a6/