Non-stationary Love waves of $SH$-type in anisotropic elastic medium. Kinematic approach
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 262-276

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the author proceeds with the study of Love waves propagation in anisotropic elastic media. These waves are a counterpart of transverse surface $SH$ waves in the isotropic case. Necessary conditions indispensable to the existence of Love waves of this polarization are deduced in the case of the arbitrary surface of an anisotropic elastic body. The employed algorithm is illustrated by some particular anisotropic cases. The space-time ray method is involved to research Love waves propagation for those types of anisotropic media whose eikonal equation is valid on the surface. Bibliography: 7 titles.
@article{ZNSL_1994_210_a20,
     author = {Z. A. Yanson},
     title = {Non-stationary {Love} waves of $SH$-type in anisotropic elastic medium. {Kinematic} approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--276},
     publisher = {mathdoc},
     volume = {210},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a20/}
}
TY  - JOUR
AU  - Z. A. Yanson
TI  - Non-stationary Love waves of $SH$-type in anisotropic elastic medium. Kinematic approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 262
EP  - 276
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a20/
LA  - ru
ID  - ZNSL_1994_210_a20
ER  - 
%0 Journal Article
%A Z. A. Yanson
%T Non-stationary Love waves of $SH$-type in anisotropic elastic medium. Kinematic approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 262-276
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a20/
%G ru
%F ZNSL_1994_210_a20
Z. A. Yanson. Non-stationary Love waves of $SH$-type in anisotropic elastic medium. Kinematic approach. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 262-276. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a20/