Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 241-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The existence “in a small” of the solutions of the perturbed initialboundary value problems (1), (2) and (2), (3) is proved. The convergence for $\varepsilon\to0$ of the solutions $\{v^\varepsilon\}$ of these problems to the solution of the initial-boundary value problem (4), (3) for the equations of aqueous solutions of polymers (4) is investigated. Bibliography: 10 titles.
@article{ZNSL_1994_210_a18,
     author = {A. P. Oskolkov},
     title = {Initial-boundary value problem with a~free surface condition for the penalized equations of aqueous solutions of polymers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {241--250},
     year = {1994},
     volume = {210},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a18/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 241
EP  - 250
VL  - 210
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a18/
LA  - ru
ID  - ZNSL_1994_210_a18
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 241-250
%V 210
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a18/
%G ru
%F ZNSL_1994_210_a18
A. P. Oskolkov. Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 241-250. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a18/