A problem of a~point source of $SH$-waves in a~case of separation of the variables
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 125-145

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $$ \operatorname{div}(\mu\nabla u)+\omega^2\rho u=-\delta(x-x_0)\delta(y-y_0), $$ where $\mu(x,y)=a(x)b(y)=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are given step functions) is considered. The problem is solved in explicit form and its asymptotic expansion, if $\omega\to0$, is found. Bibliography: 8 titles.
@article{ZNSL_1994_210_a10,
     author = {S. A. Kochengin},
     title = {A problem of a~point source of $SH$-waves in a~case of separation of the variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {210},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/}
}
TY  - JOUR
AU  - S. A. Kochengin
TI  - A problem of a~point source of $SH$-waves in a~case of separation of the variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 125
EP  - 145
VL  - 210
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/
LA  - ru
ID  - ZNSL_1994_210_a10
ER  - 
%0 Journal Article
%A S. A. Kochengin
%T A problem of a~point source of $SH$-waves in a~case of separation of the variables
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 125-145
%V 210
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/
%G ru
%F ZNSL_1994_210_a10
S. A. Kochengin. A problem of a~point source of $SH$-waves in a~case of separation of the variables. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 125-145. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/