A problem of a~point source of $SH$-waves in a~case of separation of the variables
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 125-145
Voir la notice de l'article provenant de la source Math-Net.Ru
The equation
$$
\operatorname{div}(\mu\nabla u)+\omega^2\rho u=-\delta(x-x_0)\delta(y-y_0),
$$
where $\mu(x,y)=a(x)b(y)=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are given step functions) is considered. The problem is solved in explicit form and its asymptotic expansion, if $\omega\to0$, is found. Bibliography: 8 titles.
@article{ZNSL_1994_210_a10,
author = {S. A. Kochengin},
title = {A problem of a~point source of $SH$-waves in a~case of separation of the variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--145},
publisher = {mathdoc},
volume = {210},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/}
}
S. A. Kochengin. A problem of a~point source of $SH$-waves in a~case of separation of the variables. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 125-145. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a10/