Tetrahedron equation and the algebraic geometry
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 137-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The tetrahedron equation arises as a generalization of the famous Yang–Baxter equation to the $2+1$-dimensional quantum field theory and the $3$-dimensionaI statistical mechanics. Very little is still known about its solutions. Here a systematical method is described that does produce nontrivial solutions to the tetrahedron equation with spin-like variables on the links. The essence of the method is the use of the so-called tetrahedral Zamolodchikov algebras. Bibliography: 12 titles.
@article{ZNSL_1994_209_a7,
     author = {I. G. Korepanov},
     title = {Tetrahedron equation and the algebraic geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--149},
     year = {1994},
     volume = {209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a7/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Tetrahedron equation and the algebraic geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 137
EP  - 149
VL  - 209
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a7/
LA  - en
ID  - ZNSL_1994_209_a7
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Tetrahedron equation and the algebraic geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 137-149
%V 209
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a7/
%G en
%F ZNSL_1994_209_a7
I. G. Korepanov. Tetrahedron equation and the algebraic geometry. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 137-149. http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a7/