Scaling limits in the second Painlevé transcendent
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 60-101
Cet article a éte moissonné depuis la source Math-Net.Ru
By the isomonodromy deformation method, scaling limits in the second Painlevé equation $y_{xx}=2y^3+xy-\alpha$ depending on a complex parameter to and yielding formally equations for an elliptical sine and its degenerations are studied. Results contain the description of discriminant curves on the parameter $t_0$ plane, the proof of the solvability for the system of transcendent equations for an invariant $a_0(t_0)$ for the elliptical asymptotics of the Painlevé transcendent and the description of the main asymptotic terms of the second Painlevé transcendent as $\operatorname{Re}\alpha\to\infty$ for any to with the corresponding connection formulae together in the case of general position. Bibliography: 23 titles.
@article{ZNSL_1994_209_a4,
author = {A. A. Kapaev},
title = {Scaling limits in the second {Painlev\'e} transcendent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {60--101},
year = {1994},
volume = {209},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a4/}
}
A. A. Kapaev. Scaling limits in the second Painlevé transcendent. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 60-101. http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a4/