Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive Hubbard model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 194-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The two-dimensional three-band Hubbard model is investigated using the temperature Green's function's formalism. Argument are presented in the favour of the weak-coupling approach, if the dimensionless coupling constant $U/t$ does not exceed 10-11. The normal state, the antiferromagnetic state with Neel ordering in the “copper” sublattice, and also the superconductive state with nontrivial Cooper pairing in channels with odd angular momenta are investigated. The possibility for other magnetic states in the model is discussed. Bibliography: 20 titles.
@article{ZNSL_1994_209_a11,
     author = {C. Malyshev and V. N. Popov},
     title = {Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive {Hubbard} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--228},
     year = {1994},
     volume = {209},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a11/}
}
TY  - JOUR
AU  - C. Malyshev
AU  - V. N. Popov
TI  - Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive Hubbard model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 194
EP  - 228
VL  - 209
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a11/
LA  - ru
ID  - ZNSL_1994_209_a11
ER  - 
%0 Journal Article
%A C. Malyshev
%A V. N. Popov
%T Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive Hubbard model
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 194-228
%V 209
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a11/
%G ru
%F ZNSL_1994_209_a11
C. Malyshev; V. N. Popov. Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive Hubbard model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 12, Tome 209 (1994), pp. 194-228. http://geodesic.mathdoc.fr/item/ZNSL_1994_209_a11/