On $n$-equivalence of knots and invariants of finite degree
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 152-173

Voir la notice de l'article provenant de la source Math-Net.Ru

A notion of $n$-equivalence of knots is introduced and it is shown that the equivalence classes with the connected sum operation make finitely generated abelian groups composing an inverse sequence. The $n$-equivalence class of knot is the universal invariant of degree $n$ (Vassiliev invariant). Bibliography: 3 titles.
@article{ZNSL_1993_208_a8,
     author = {M. N. Gusarov},
     title = {On $n$-equivalence of knots and invariants of finite degree},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--173},
     publisher = {mathdoc},
     volume = {208},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/}
}
TY  - JOUR
AU  - M. N. Gusarov
TI  - On $n$-equivalence of knots and invariants of finite degree
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 152
EP  - 173
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/
LA  - ru
ID  - ZNSL_1993_208_a8
ER  - 
%0 Journal Article
%A M. N. Gusarov
%T On $n$-equivalence of knots and invariants of finite degree
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 152-173
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/
%G ru
%F ZNSL_1993_208_a8
M. N. Gusarov. On $n$-equivalence of knots and invariants of finite degree. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 152-173. http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/