On $n$-equivalence of knots and invariants of finite degree
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 152-173
Voir la notice de l'article provenant de la source Math-Net.Ru
A notion of $n$-equivalence of knots is introduced and it is shown that the equivalence classes with the connected sum operation make finitely generated abelian groups composing an inverse sequence. The $n$-equivalence class of knot is the universal invariant of degree $n$ (Vassiliev invariant). Bibliography: 3 titles.
@article{ZNSL_1993_208_a8,
author = {M. N. Gusarov},
title = {On $n$-equivalence of knots and invariants of finite degree},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--173},
publisher = {mathdoc},
volume = {208},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/}
}
M. N. Gusarov. On $n$-equivalence of knots and invariants of finite degree. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 152-173. http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a8/