On the location parameter confidence intervals based on a~random size sample from a~partially known population
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 10, Tome 207 (1993), pp. 98-100
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of constructing confidence intervals of a fixed length for the location parameter based on a random size sample is considered. It is proposed to use the confidence interval $$ \theta^*-u\sqrt p/\sigma\theta\theta^*+u\sqrt p/\sigma, $$ where $\theta^*$ is an adaptive estimator, $\sigma^2$ is the Fisher information, and $p^{-1}$ is the mean of the sample size. Nonparametric bounds are given for the limit as $p\to0$ confidence probability. Bibliography: 5 titles.
@article{ZNSL_1993_207_a6,
author = {L. B. Klebanov and J. A. Melamed},
title = {On the location parameter confidence intervals based on a~random size sample from a~partially known population},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--100},
publisher = {mathdoc},
volume = {207},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a6/}
}
TY - JOUR AU - L. B. Klebanov AU - J. A. Melamed TI - On the location parameter confidence intervals based on a~random size sample from a~partially known population JO - Zapiski Nauchnykh Seminarov POMI PY - 1993 SP - 98 EP - 100 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a6/ LA - ru ID - ZNSL_1993_207_a6 ER -
%0 Journal Article %A L. B. Klebanov %A J. A. Melamed %T On the location parameter confidence intervals based on a~random size sample from a~partially known population %J Zapiski Nauchnykh Seminarov POMI %D 1993 %P 98-100 %V 207 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a6/ %G ru %F ZNSL_1993_207_a6
L. B. Klebanov; J. A. Melamed. On the location parameter confidence intervals based on a~random size sample from a~partially known population. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 10, Tome 207 (1993), pp. 98-100. http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a6/