An application of the Neyman--Oearson lemma to Gaussian processes
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 10, Tome 207 (1993), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$, $i=1,2$, $t\in[0,1]$, be Gaussian zero mean processes with continuous sample paths. Bounds for the probabilities $$ \beta_i=\mathsf P\{\xi_i(t)-a_i(t)\in B\},\qquad i=1,2, $$ are given, where $a_i\in C[0,1]$ and $B$ is a Borel subset of $C[0,1]$. Bibliography: 5 titles.
@article{ZNSL_1993_207_a0,
     author = {N. K. Bakirov},
     title = {An application of the {Neyman--Oearson} lemma to {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {207},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a0/}
}
TY  - JOUR
AU  - N. K. Bakirov
TI  - An application of the Neyman--Oearson lemma to Gaussian processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 5
EP  - 12
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a0/
LA  - ru
ID  - ZNSL_1993_207_a0
ER  - 
%0 Journal Article
%A N. K. Bakirov
%T An application of the Neyman--Oearson lemma to Gaussian processes
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 5-12
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a0/
%G ru
%F ZNSL_1993_207_a0
N. K. Bakirov. An application of the Neyman--Oearson lemma to Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 10, Tome 207 (1993), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_1993_207_a0/