Free interpolation in some spaces of smooth functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 107-118

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the traces of functions from the classes $B^l_{p,\theta}$ or $F^l_{p,\theta}$ on a set $A\subset\mathbb R^n$. In the proofs the results of [1] are essentially used. We consider the folowing questions: 1) Under what conditions on a compact set $K$, $K\subset\mathbb R^n$, do the traces on $K$ of functions from $B^l_{p,\theta}\cap\mathbb C(\mathbb R^n)$ (or $F^l_{p,\theta}\cap\mathbb C(\mathbb R^n)$ fill in the space $C(K)$? 2) Under what conditions on a Borel set $A$, does the space of traces on $A$ of functions from $F^l_{p,\theta}$, $0$, coincide with some quasi-Banach lattice? 3) What is the description of the space of traces in this case? See Theorem 2.1 for an answer to 1) and Theorem 2.2 for answer to 2) and 3). In the last part pf the paper we prove counterparts of Theorems 2.1 and 2.2 for spaces of analytic functions. Bibliography: 14 titles.
@article{ZNSL_1993_206_a8,
     author = {Yu. V. Netrusov},
     title = {Free interpolation in some spaces of smooth functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {206},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a8/}
}
TY  - JOUR
AU  - Yu. V. Netrusov
TI  - Free interpolation in some spaces of smooth functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 107
EP  - 118
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a8/
LA  - ru
ID  - ZNSL_1993_206_a8
ER  - 
%0 Journal Article
%A Yu. V. Netrusov
%T Free interpolation in some spaces of smooth functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 107-118
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a8/
%G ru
%F ZNSL_1993_206_a8
Yu. V. Netrusov. Free interpolation in some spaces of smooth functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 107-118. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a8/