Bepresentating systems of the space of functions holomorphic in a~$(\rho,\alpha)$-convex domain
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 91-106

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a natural supplement to Chapter 5 of [8]. We show that the criterion (found earlier) of decomposability of functions holomorphic in the closure of a $(\rho,\alpha)$-convex domain $D$ into a series against a sertain special system of entire functions applies also to the functions holomorphic in $D$. Moreover, a new integral representation of entire functions is presented that enables one to construct new representating systems for the spaces of holomorphic functions $H(\overline D)$ and $H(D)$. Bibliography: 17 titles.
@article{ZNSL_1993_206_a7,
     author = {L. S. Maergoiz},
     title = {Bepresentating systems of the space of functions holomorphic in a~$(\rho,\alpha)$-convex domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--106},
     publisher = {mathdoc},
     volume = {206},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a7/}
}
TY  - JOUR
AU  - L. S. Maergoiz
TI  - Bepresentating systems of the space of functions holomorphic in a~$(\rho,\alpha)$-convex domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 91
EP  - 106
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a7/
LA  - ru
ID  - ZNSL_1993_206_a7
ER  - 
%0 Journal Article
%A L. S. Maergoiz
%T Bepresentating systems of the space of functions holomorphic in a~$(\rho,\alpha)$-convex domain
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 91-106
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a7/
%G ru
%F ZNSL_1993_206_a7
L. S. Maergoiz. Bepresentating systems of the space of functions holomorphic in a~$(\rho,\alpha)$-convex domain. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 91-106. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a7/