On the regularity in time of weak solutions of quasilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 78-84
Voir la notice du chapitre de livre
The continuity in $L_2(\Omega)$ with respect to $t$ as well as some integral Hölder condition in $t$ with exponent $1/2$ are established for weak solutions of quasilinear doubly degenerate parabolic equations. Bibliography: 5 titles.
@article{ZNSL_1993_206_a5,
author = {A. V. Ivanov and P. Z. Mkrtchan},
title = {On the regularity in time of weak solutions of quasilinear doubly degenerate parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--84},
year = {1993},
volume = {206},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a5/}
}
TY - JOUR AU - A. V. Ivanov AU - P. Z. Mkrtchan TI - On the regularity in time of weak solutions of quasilinear doubly degenerate parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1993 SP - 78 EP - 84 VL - 206 UR - http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a5/ LA - ru ID - ZNSL_1993_206_a5 ER -
A. V. Ivanov; P. Z. Mkrtchan. On the regularity in time of weak solutions of quasilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 21, Tome 206 (1993), pp. 78-84. http://geodesic.mathdoc.fr/item/ZNSL_1993_206_a5/